Sufficient conditions for quasiconformality of harmonic mappings of the upper halfplane onto itself
نویسندگان
چکیده
In this paper we introduce a class of increasing homeomorphic self-mappings of R. We define a harmonic extension of such functions to the upper halfplane by means of the Poisson integral. Our main results give some sufficient conditions for quasiconformality of the extension.
منابع مشابه
On the Linear Combinations of Slanted Half-Plane Harmonic Mappings
In this paper, the sufficient conditions for the linear combinations of slanted half-plane harmonic mappings to be univalent and convex in the direction of $(-gamma) $ are studied. Our result improves some recent works. Furthermore, a illustrative example and imagine domains of the linear combinations satisfying the desired conditions are enumerated.
متن کاملConvex combinations of harmonic shears of slit mappings
In this paper, we study the convex combinations of harmonic mappings obtained by shearing a class of slit conformal mappings. Sufficient conditions for the convex combinations of harmonic mappings of this family to be univalent and convex in the horizontal direction are derived. Several examples of univalent harmonic mappings constructed by using these methods are presented to illustrate...
متن کاملConvolutions of Planar Harmonic Convex Mappings
Ruscheweyh and Sheil-Small proved that convexity is preserved under the convolution of univalent analytic mappings in K. However, when we consider the convolution of univalent harmonic convex mappings in K H , this property does not hold. In fact, such convolutions may not be univalent. We establish some results concerning the convolution of univalent harmonic convex mappings provided that it i...
متن کاملOn certain subclasses of univalent $p$-harmonic mappings
Inthis paper, the main aim is to introduce the class $mathcal{U}_p(lambda,alpha,beta,k_0)$ of $p$-harmonic mappings togetherwith its subclasses $mathcal{U}_p(lambda,alpha,beta,k_0)capmathcal {T}_p$ and $mathcal{U}_p(lambda,alpha,beta,k_0)capmathcal {T}_p^0$, andinvestigate the properties of the mappings in these classes. First,we give a sufficient condition for mappings to be in $mathcal{U}_p(l...
متن کاملConvolutions of Harmonic Convex Mappings
The first author proved that the harmonic convolution of a normalized right half-plane mapping with either another normalized right halfplane mapping or a normalized vertical strip mapping is convex in the direction of the real axis. provided that it is locally univalent. In this paper, we prove that in general the assumption of local univalency cannot be omitted. However, we are able to show t...
متن کامل